Remembering Disaster: How Qing Dynasty Records Reveal Connections Between Memory and Environment8/4/2019
Meghan Michel, Georgetown University Memory is one of the most powerful parts of the human psyche. It can help us make sense of the world around us, but it can also cloud our vision. Over long timeframes, memory can actually become embedded into a culture in ways that are difficult to comprehend. One of the complex effects of this sort of cultural memory may be the development of a culture of resilience in the face of extreme climatic events. Long-term environmental memories might help a community respond to otherwise destructive climate changes in a way that allows them to survive, recover, and sometimes even thrive. Given the increasing impact of extreme weather events due to anthropogenic climate change, it is uniquely important right now to understand how memory can contribute to creating a more resilient culture. In order to make sense of the connections between memory, culture, and climate, this article considers how memory might have played a role in the interpretation of extreme weather events in Qing dynasty China (1644–1912). A look at Qing dynasty records suggests that long-term environmental memory could indeed help cultivate a culture of resiliency, while at the same time skewing how accurate the perception of a disaster is. More than anything, this look into the potential roles of memory provides a new perspective with which to think about our current interpretation of environmental changes and cultural capacity for adaptation. Researchers generally agree that we actively use our memory when processing our surroundings, including weather.[1] Imagine you live in a town that has faced extreme flooding in recent years. When you experience a heavy rain, you will probably remember the floods. However, the exact way that we use memory to interpret the environment may not be so simple as providing the background with which we think about weather or climate change. In her work on biological control programs, scholar Karen Middleton describes a feedback loop by which present events reshape how the past is remembered at the same time as the interpretation of past events shapes the understanding of present conditions.[2] So just as memories of a disastrous flood would affect how villagers interpret a heavy rain in their present, if they are not currently experiencing flooding it could influence their memories of that past disaster. In our hypothetical water-logged village, perhaps the current rains are locally just as strong as the rains during a past flood. Yet because those rains are not accompanied by a flood, villagers might mistakenly remember the first flood as having more extreme rains. There is also some evidence that memory can contribute to long-term integration of climate awareness into human societies. Archaeologist Toby Pillat has offered the idea that daily interactions with weather can create cultural norms that dictate how future people might interact with their climate.[3] The cultural norms that Pillat refers to may even develop into a culture of resiliency, as described by environmental historian Adam Sundberg in his work on the infamous Christmas Flood of 1717. Sundberg describes a process of “disaster-induced learning,” in which repeated incidents of disaster lead to long-term “cultures of coping,” a gradualist theory that he reports as currently trending in the field of disaster history.[4] Occasionally, this sort of cultural learning about climate may take the form of a clearer understanding of weather events over time. For example, environmental historian Dagomar Degroot found that “the human consequences of the Little Ice Age…prompted Dutch citizens to think comparatively and accurately about weather across long timeframes.”[5] Yet long-term environmental learning may also lead to a skewed perception of climatic events due to increased societal preparedness. In his study of lower Austrian floods in 1572-3, scholar Christian Rohr makes the argument that “due to the preparedness of the population, most of the floods were not perceived as disasters.”[6] While in some cases, memory might lead to more accurate interpretations of climate, in others its concrete effects in establishing adaptive cultures may have the opposite impact – which in turn could influence the long-term understanding of climate in a society. So how might memory have played a role in Qing dynasty cultural understandings of, and responses to, climate change? To answer this question, we will look at the North China Plain (NCP). The NCP is defined here as the modern-day provinces of Beijing, Tianjin, Hebei, Shandong, Henan, Anhui, and Jiangsu. Such a wide definition of the area is useful in that it allows for more data, and therefore clearer identification of patterns; it is reasonable, in that precipitation extremes across the NCP are fairly standard. The Qing dynasty was not only a time of distinct dynastic change in China, but it was also a part of an era of occasionally global climate change that is often termed the Little Ice Age (LIA). The LIA is generally understood to be a period of cooling that in many places reached its coldest phase between the fifteenth and eighteenth centuries.[7] While there was a broad global trend of cooling, the LIA had different effects across different areas over variable time scales. In China, the LIA can be split into three stages: a cool, dry early period, a warm, dry middle period, and a wet, cold late period.[8] These changes are thought to be related to changes in both East Asian Summer Monsoons (EASM), and the El Niño-Southern Oscillation (ENSO) cycle. [9] The NCP in particular experiences highly variable precipitation patterns due to the strong effect of the EASM in the region. [10] Across the Qing dynasty, the region suffered many environmental disasters, including extreme floods and droughts. During the Qing dynasty, gazetteers called fangzhi 方志 were systematically written every day. Official chronicles were mandated by the government; many more local gazetteers were kept by various scholars or officials, and organized by government historians over the course of the Qing dynasty. These primary source texts contain detailed information about the weather. Because they were written systematically, whether or not a chronicle mentions a disaster, like the floods and droughts we will examine here, is more likely to be a result of the recorder’s interpretation of the weather than, for example, the recorder’s desire or freedom to write. Therefore, a comparison of how often a disaster was documented with the actual occurrence of extreme events can be used as a way to guess at the role of memory and culture in the interpretation of weather. The recently published Reconstructed East Asian Climate Historical Encoded Series (REACHES) database uses the fangzhi to create data points that represent weather events, allowing us to build a timeline for how often a drought or flood disaster was recorded throughout the Qing dynasty. In order to create a timeline for when droughts and floods actually occurred during the Qing dynasty in the NCP, we can look at the reconstruction of extreme weather events from the work of a team of Chinese geographers led by Zheng Jingyun. Zheng and his co-authors have used a wide range of primary text sources, then verified the information in them with weather measurements compiled using scientific instruments. They also used statistical analysis to account for the fact that the number of textual sources increases over time, due to the higher likelihood that more recent records could be preserved. While it would be ideal to have more scientific data to create our timeline, such as information from tree rings or pollen records, the reality is that most climate history for this region and time relies on historic archives, probably due to the abundance of primary source texts from China. The methods used by Zheng and his team make their results some of the best currently available, and most useful for this comparison. They look specifically at extreme droughts and floods, which they define as periods lasting more than three years that have an amount of rain more than one and half times greater or lower than about the average precipitation level. The fact that they look at both severity and time scale means that when they note the occurrence of disaster, there should theoretically be fangzhi records for that disaster from across the NCP. Building these parallel timelines of documentation and occurrence for both droughts and floods reveals curious correlations and discrepancies. First, the highest numbers of fangzhi records of flood and drought do not always correlate with the frequency and severity of disasters. For example, two of the most extreme events identified by Zheng and his co-authors in the NCP were a decade-long drought that took place from 1634 to 1644, and another calamitous drought from 1719 to 1723.[11] Yet there are several points in our timeline of documentation where the amount of drought records is higher than in those years of especially extreme drought. While the frequency of fangzhi flood documentation lines up a little bit better with the occurrence of extreme floods, there are still moments where we see a higher amount of flood records in years when extreme flooding did not occur. Disaster records therefore often did not grow more common during, or even immediately after, many of the worst disasters. Usually the quantity of fangzhi records only surged over a decade after a disaster. In fact, years immediately following extreme weather events generally had fewer records of disaster. These patterns may suggest that when a disaster was ongoing, it was harder to keep records like local fangzhi as people struggled to survive and rebuild. They could also indicate that in the short term, the memory of a disaster helped give a more realistic sense of what constituted that sort of event, and led to more accurate reporting. However, over time, this accuracy of memory may have faded, and instead cultural memory could have encouraged a heightened sensitivity towards recording disaster. Left: Reconstruction of frequency of fangzhi drought records frequency from 1645-1795, overlaid in orange with extreme drought events from Zheng et al. in 1634 – 1644 and 1719 – 1723. Right: Reconstruction of frequency of fangzhi flood records from 1646-1806, overlaid in orange with extreme flood events from Zheng et al. in 1650-60, 1730, and 1750-60. Looking more broadly, it seems that there is overall more documentation of disaster earlier in Qing history. For both droughts and floods, moving forward in time there is a moderate trend from more to fewer fangzhi records of either type of extreme event. Moreover, the amount of variation in disaster documentation frequency from year to year appears to be higher earlier in history. There also seems to be a slight trend over time towards more stability in the amount of records of both floods and droughts. These wide patterns of decreasing records and increasing stability of documentation frequency may suggest more or less long-term accuracy in memory of disaster severity, depending on whether you emphasize periods of extreme events or of non-disaster. This might also point to the development of a culture of resiliency. If the people of the NCP were better equipped to deal with these types of events over time, they might not be so inclined to interpret the weather as a disaster, even in cases when it was as extreme as in previous decades. It is clear that there is no simple relationship between memory and environmental disasters. It should also be noted that these potential patterns and connections are based on a simple visual comparison of timelines. However, the lack of precision here speaks to the fact that this area holds much potential for future research. In particular, Chinese climate history scholarship thus far has often focused on using statistical significance testing to propose correlative relationships between environmental changes and societal reactions. [12] This sort of quantitative research is an ideal starting point for exploring more nuanced aspects of environmental history. It allows for engagement with unique scholarship, like the ideas about memory explored here, and in this case, offers diverse new perspectives on the possible links between culture and environmental extremes. This study reveals that memory could be a powerful part of how we respond to environmental changes. At the same time as memory may help develop an adaptive culture, accurate judgement of the seriousness of a disaster might be clouded. As we enter an era of increased extreme weather events, it is important to consider whether our interpretations of disaster are accurate. Moreover, while long-term memory has potentially contributed to climate change resilience in our cultures, our current adaptations may not be enough to deal with the disasters of the future. We might also examine how the gradual nature of the current rise in disaster severity may influence both our cultural adaptations and misunderstandings of memory. As the consequences of anthropogenic climate change become more pronounced, it is crucial that we look to the past for new ideas about the relationship between culture and environment, including the complex effects of memory. [1] See Toby Pillatt, “Experiencing Climate: Finding Weather in Eighteenth Century Cumbria,” Journal of Archaeological Method and Theory 19:4 (December 2012): 564–81; A. Hall, and G. Endfield, 2016: “Snow Scenes: Exploring the Role of Memory and Place in Commemorating Extreme Winters,” Wea. Climate Soc., 8:5–19; or Dagomar Degroot, The Frigid Golden Age: Climate Change, the Little Ice Age, and the Dutch Republic, 1560–1720 (New York: Cambridge University Press, 2018), 262. [2] Karen Middleton, "Renarrating a Biological Invasion: Historical Memory, Local Communities and Ecologists," Environment and History 18:1 (2012): 61-95. [3] Pillatt, “Experiencing Climate.” [4] Adam Sundberg, “Claiming the Past: History, Memory, and Innovation Following the Christmas Flood of 1717,” Environmental History 20:2 (April 2015): 238–61. [5] Degroot, The Frigid Golden Age, 262. [6] Christian Rohr, "Floods of the Upper Danube River and Its Tributaries and Their Impact on Urban Economies (c. 1350-1600): The Examples of the Towns of Krems/Stein and Wels (Austria)," Environment and History 19:2 (2013): 148. [7] Dagomar Degroot, “Climate Change and Society from the Fifteenth Through the Eighteenth Centuries,” WIREs Climate Change Advanced Review, 2018, doi:10.1002/wcc.518, 1. [8] Anning Cui, Chunmei Ma, Lin Zhao, Lingyu Tang, and Yulian Jia, Pollen Records of the Little Ice Age Humidity Flip in the Middle Yangtze River Catchment, Vol. 193 2018, doi://doi.org/10.1016/j.quascirev.2018.06.015. [9] Cui et al., Pollen Records. [10] J. Zheng, W. C. Wang, Q. Ge, Z. Man, and P. Zhang, Precipitation variability and extreme events in eastern China during the past 1500 years Terr. Atmos. Ocean. Sci., 17, 2006, 580. [11] Zheng et al., Precipitation variability and extreme events, 588. [12] This understanding of the broader field is mostly informed by Dr. Dagomar Degroot. For a good example of this sort of statistical correlative work, see David Zhang, David D., Harry F. Lee, Cong Wang, Baosheng Li, Qing Pei, Jane Zhang, and Yulun An. “The causality analysis of climate change and large-scale human crisis.” Proceedings of the National Academy of Sciences (2011): 201104268. Works Cited:
Andrew Salvador Mathews. "Suppressing Fire and Memory: Environmental Degradation and Political Restoration in the Sierra Juárez of Oaxaca, 1887-2001." Environmental History 8:1 (2003): 77-108. Brook, Timothy. The Troubled Empire: China in the Yuan and Ming Dynasties. Cambridge, USA: Harvard University Press, 2010. Cui, Anning, Chunmei Ma, Lin Zhao, Lingyu Tang, and Yulian Jia. "Pollen Records of the Little Ice Age Humidity Flip in the Middle Yangtze River Catchment." Quaternary Science Reviews 193 (2018): 43-53. Degroot, Dagomar. “Climate Change and Society from the Fifteenth Through the Eighteenth Centuries.” WIREs Climate Change Advanced Review, 2018. Degroot, Dagomar. The Frigid Golden Age: Climate Change, the Little Ice Age, and the Dutch Republic, 1560–1720. New York: Cambridge University Press, 2018. Fang, XiuQi, Xiao, LingBo, and Wei, ZhuDeng. “Social Impacts of the Climatic Shift Around the Turn of the 19th Century on the North China Plain.” Science China Earth Sciences 56:6 (2013): 1044–58. Forgas, Joseph P., Liz Goldenberg, and Christian Unkelbach. 2009. Can Bad Weather Improve Your Memory? an Unobtrusive Field Study of Natural Mood Effects on Real-Life Memory. Vol. 45. Guy, R. Kent. Qing Governors and Their Provinces: the Evolution of Territorial Administration in China, 1644-1796. Seattle: University of Washington Press, 2010. Hall, A. and G. Endfield, “Snow Scenes”: Exploring the Role of Memory and Place in Commemorating Extreme Winters. Wea. Climate Soc. 8 (2016): 5–19. Hao, Zhixin, Yingzhuo Yu, Quansheng Ge, and Jingyun Zheng. “Reconstruction of High resolution Climate Data over China from Rainfall and Snowfall Records in the Qing Dynasty.” WIREs: Climate Change 9 (3) (2018): e517. Koselleck, Reinhart. Futures Past: On the Semantics of Historical Time. Cambridge, Mass: MIT Press, 1985. Kwiatkowski, Teresa, and Alan Holland. "Dark Is the World to Thee: A Historical Perspective on Environmental Forewarnings." Environment and History 16:4 (2010): 455-82. Li, S., He, F. & Zhang, X., "A spatially explicit reconstruction of cropland cover in China from 1661 to 1996." Reg Environ Change 16:2 (2016): 417-428. Middleton, Karen. "Renarrating a Biological Invasion: Historical Memory, Local Communities and Ecologists." Environment and History 18:1 (2012): 61-95. Pillatt, Toby. “Experiencing Climate: Finding Weather in Eighteenth Century Cumbria.” Journal of Archaeological Method and Theory 19:4 (December 2012): 564–81. Rohr, Christian. "Floods of the Upper Danube River and Its Tributaries and Their Impact on Urban Economies (c. 1350-1600): The Examples of the Towns of Krems/Stein and Wels (Austria)." Environment and History 19:2 (2013): 133-48. Rohr, Christian. "Man and Natural Disaster in the Late Middle Ages: The Earthquake in Carinthia and Northern Italy on 25 January 1348 and Its Perception." Environment and History 9:2 (2003): 127-49. Shuoben Bi, Shengjie Bi, Changchun Chen, Athanase Nkunzimana, Yanping Li, and Weiting Wu. “Spatial Characteristics Analysis of Drought Disasters in North China during the Ming and Qing Dynasties.” Natural Hazards & Earth System Sciences Discussions 2016, 1–13. Sundberg, Adam. “Claiming the Past: History, Memory, and Innovation Following the Christmas Flood of 1717.” Environmental History 20:2 (April 2015): 238–61. Wang, P. K. et al. Construction of the REACHES climate database based on historical documents of China. Sci. Data. 5:180288. Zheng, J., W. C. Wang, Q. Ge, Z. Man, and P. Zhang, 2006: Precipitation variability and extreme events in eastern China during the past 1500 years. Terr. Atmos. Ocean. Sci., 17, 579- 592. |
Archives
March 2022
Categories
All
|