Harriet Mercer, University of Oxford A section of a map of New South Wales based off the work of Oxley and King and showing how vegetation marks were written on to the maps. Joseph Cross, "Map of New South Wales, Embellished with Views of the Harbour of Port Jackson" (London: J. Cross, 1826) from the collections of the State Library of New South Wales. In early nineteenth century Australia, surveyors were given a near impossible task by colonial authorities. They were asked to use their expeditions to ascertain "the general nature of the climate, as to heat, cold, moisture, winds, rains, periodical seasons." [1] Meeting this directive was difficult because most surveyors did not spend more than a few days or weeks in a location that was otherwise unfamiliar to them. In these situations, precision instruments such as thermometers and barometers were of limited utility as they could only offer a reading at the time of visitation and not for any other time of year or for any other year when atmospheric conditions might be quite different. Plants provided one solution to the dilemma. In the opening decades of the nineteenth century, Aboriginal Australians helped surveyors to decipher some of the relationships between plants and atmosphere in Australia. This article shows how surveyors were taught that the distribution of certain tree species could help them understand the way rainfall patterns varied over space. It also shows how surveyors learnt to use the watermarks on trees and debris lodged in branches as indications of the way rainfall patterns varied over time. With the help of Aboriginal Australians, surveyors were practicing a sort of historical climatology. They were attempting to understand past atmospheric changes in a given area using indirect sources. Can the evidence contained in surveyors’ journals and maps help the historical climatologists and climate scientists of today? This article argues that they can. When Thomas Mitchell, the surveyor-general of New South Wales, was tasked with charting the two major inland river systems of Australia’s south east, his Wiradjuri guides helped him understand the association of particular plants with particular atmospheric and hydraulic conditions. Mitchell was taught that the yarra tree (known today as the river red-gum or eucalyptus camaldulensis) indicated the presence of a river or lake. Mitchell scanned the horizon for these tall trees when he wanted to locate a place of permanent waters: The yarra is certainly a pleasing object in various respects; its shining bark and lofty height inform the traveller of a distant probability of water […] and being visible over all other trees it usually marks the course of riverd so well that, in travelling along the Darling and Lachlan [rivers], I could with ease trace the general course of the river without approaching its banks. [2] Mitchell’s Wiradjuri guides showed him that the presence of goborro trees, by contrast, indicated a place of transient waters. Mitchell learnt that the goborro tree (most likely the plant known today as black box or Eucalyptus largiflorens) flourished on plains subject to temporary inundations rather than on the banks of more permanent waters. “These peculiarities,” Mitchell wrote, “we ascertained only after examining many a hopeless hollow where the goborro grew by itself; nor [sic] until I had found my sable guides eagerly scanning the yarra from afar when in search of water, and condemning any distant view of goborro trees as hopeless during that dry season.” [3] But the presence of particular trees did more than give surveyors an indication of how rain fell and flowed over space in inland Australia. Flood marks on trees such as the yarra also gave surveyors an indication of how much rainfall an area had received in the past. Some of Mitchell’s travels around Australia’s inland river systems were during the drier than average year of 1835, which meant that he did not see how the country looked when it was well-watered. [4] But Mitchell often used the water stains on river red gums and other trees to make judgements about the rainfall variability of an area. Near the inland Lachlan River, for example, he noticed “a tract extending southward from the river for about three miles, on which grew yarra trees bearing the marks of occasional floods to the height of a foot above the common surface.” [5] An illustration from Mitchell’s account of his 1836 expedition showing a ‘flood-branch of the Murray, with the scenery common on its bank’ including the yarra or river red gum tree. Thomas Mitchell, "Three Expeditions into the Interior of Eastern Australia; with descriptions of the recently explored region of Australia Felix, and of the present colony of New South Wales, Volume 2." Other surveyors working in Australia such as John Oxley and Charles Sturt also used the flood marks left on trees to understand the rainfall variability that a region could experience. Travelling through inland New South Wales northwest of Sydney in 1818, Oxley did not think that the Castlereagh River had been flooded for a long period because there were “no marks of wreck or rubbish on the trees or banks” of the river. [6] Cedar trees along the Hastings River further east, by contrast, bore “marks of flood exceeding twenty feet, but confined to the bed of the river.” [7] Travelling southwest of Sydney about ten years later, Charles Sturt reported “marks of recent flood on the trees, to the height of seven feet.” [8] Surveyors’ atmospheric observations were not, moreover, confined to their journals. They were also written on their maps of Australia. Sometimes, this data was indirectly transcribed and would only be decipherable when read together with the surveyors’ written accounts. Take the example of an 1826 map of New South Wales, which was based on the work of two surveyors. In addition to the names of settlements, rivers and mountains, the map had descriptions of prevailing plant life written on to its surface. [9] The presence of plants such as “box” (or goborro as Mitchell called it) on the map indicated that an area was subject to flood as this was the plant that liked to wet its feet in temporary inundations. More often, the atmospheric information plants provided was directly recorded on to surveyors’ maps. In 1822, for instance, Oxley produced a map which included the Lachlan River, a waterway he had visited five years earlier in 1817. By the sides of the River, Oxley wrote over the map “Low Marshy Country devoid of Hills and occasionally overflowed, perhaps to the extent of 30 miles on each side of the River.” Near other rivers on the map, Oxley also added earth-atmosphere descriptions such as “marks of the flood 30 feet above the present surface of the River’ and ‘Marks of the rise of the flood about 16 feet.” [10] Surveyors’ maps were, then, not just topographical representations of the country – they were also atmospheric representations. The atmospheric information contained in these maps and journals has been overlooked by historians and historical climatologists. This is in part because the maps and journals were created in a period when the use of precision instruments such as thermometers was becoming increasingly widespread and when methods for observing these instruments were being standardised. But as this article (and my doctorate research) shows, instruments were not always the preferred newcomer method for accessing information about the atmosphere. Whereas instruments offered surveyors isolated snapshots of the atmosphere, plants revealed annual and interannual trends. Like historical climatologists and paleoclimatologists today, nineteenth century surveyors yearned to know the atmospheric history of a place. This Australian case study suggests that there are at least three reasons why survey maps and journals deserve the attention of contemporary climate scientists. First, these sources could help historical climatologists overcome the bias toward reconstructing past temperatures over other atmospheric variables. “Most of the climate reconstructions over say the last 1000 years,” Brázdil et al. argued in 2005, "focus on temperature." [11] More recently, the editors of the 2018 Palgrave Handbook of Climate History have argued that precipitation is a "field of research calling for more effort by climate historians." [12] One of the reasons that past precipitation patterns have received less attention than past temperature patterns is because the latter tend to be better represented in the sources. Survey journals and maps can help address this bias in the sources. Second, these sources not only offer information on an under-represented atmospheric variable. They also offer information on under-represented regions. Often, when nineteenth century rain-gauge measurements were taken, they were recorded in urban centers and port cities. This is a problem because precipitation rates and patterns are “highly localized” phenomena. [13] The amount of rainfall one area received could be different for an area just a few kilometers away. Attaining more geographically dispersed precipitation information is therefore crucial to producing more accurate and geographically diverse reconstructions. Surveyors’ records offer information about precipitation patterns for areas where no rain-gauge records were kept in nineteenth-century Australia. Finally, survey maps and journals could provide scientists with information about how particular plants are responding to the earth’s changing atmosphere. The river red gums that are frequently mentioned in Mitchell’s journals have been the subject of recent research into the water needs of flood-plain trees. These trees, researchers have shown, are crucial to the health of flood-plain eco-systems: ‘Everything relies on the red gum to maintain health’. [14] Yet while it is well known that river red gums have adapted strategies for surviving long periods of drought, exactly how long these trees can go without water is less certain. Dr. Tanya Doody’s research, for example, indicates that in conditions of below average rainfall, the trees should not go more than seven years without being flooded. [15] The records of surveyors could offer an additional source of data for such important research projects. In the case of Australia, survey maps and journals are accessible sources. The journals referred to in this article are all digitized and available online without the need for payment or institutional affiliation. Public institutions such as the National Library of Australia and the State Library of New South Wales have also digitized numerous survey maps in high resolution, which allows researchers to zoom in on the atmospheric details that surveyors marked on their charts. Recognizing the valuable atmospheric data contained in these historical sources could prompt other institutions to digitize more survey journals and maps. Such a project promises to help climate scientists in their quest to reconstruct past climates in order to better understand future atmospheric changes and the effects of those changes on plant life and river systems. It also promises to illuminate the way past efforts to understand the atmospheric patterns in Australia were sometimes joint newcomer-Indigenous endeavors. Harriet Mercer is a PhD candidate in the Centre for Global History at the University of Oxford. She is writing a history of climate knowledge production in Australia in the nineteenth century, and exploring how the Anthropocene is changing the way historians write and research history. [1] See for example John Oxley, Journals of two expeditions into the interior of New South Wales undertaken by order of the British Government in the years 1817 – 1818, http://setis.library.usyd.edu.au/ozlit/pdf/p00066.pdf; Phillip Parker King, Narrative of a Survey of the Intertropical and Western Coasts of Australia Performed Between the Years 1818 and 1822, Volume 1, http://gutenberg.net.au/ebooks/e00027.html; Charles Sturt, Two Expeditions into the Interior of Southern Australia, during the years 1828, 1829, 1830, and 1831, http://www.gutenberg.org/files/4330/4330-h/4330-h.htm-
[2] Thomas Mitchell, Three Expeditions into the Interior of Eastern Australia; with descriptions of the recently explored region of Australia Felix, and of the present colony of New South Wales, Volume 2, http://gutenberg.net.au/ebooks/e00036.html. [3] Mitchell, Three Expeditions, Volume 2, http://gutenberg.net.au/ebooks/e00036.html. [4] Linden Ashcroft, Joëlle Gergis and David John Karoly, “A historical climate dataset for southeastern Australia, 1788 – 1859,” Geoscience Data vol. 1, no. 2 (2014) p. 172. [5] Mitchell, Three Expeditions, Volume 2, http://gutenberg.net.au/ebooks/e00036.html. [6] Oxley, Journals of two expeditions, http://setis.library.usyd.edu.au/ozlit/pdf/p00066.pdf. [7] Oxley, Journals of two expeditions, http://setis.library.usyd.edu.au/ozlit/pdf/p00066.pdf. [8] Sturt, Two Expeditions, http://www.gutenberg.org/files/4330/4330-h/4330-h.htm. [9] Joseph Cross, Map of New South Wales, Embellished with View of the Harbour of Port Jackson (London: J. Cross, 1826). [10] John Oxley, A Chart of the Interior of New South Wales (London: A. Arrowsmith, 1822). [11] Rudolf Bradzil et al. “Historical Climatology in Europe the State of the Art,” Climate Change vol. 3 (2012), pp. 386 – 387. [12] Christian Pfister et al. “General Introduction: Weather, Climate, and Human History,” in The Palgrave Handbook of Climate History eds. Christian Pfister, Sam White and Franz Mauelshagen (London: Palgrave Macmillan, 2018), p. 12. [13] Pfister et al. “General Introduction: Weather, Climate, and Human History,” p. 12. [14] Mary O’Callaghan, “The water needs of floodplain trees – the inside view,” ECOS, 9 April 2018, https://ecos.csiro.au/flood-plain-river-red-gums. [15] O’Callaghan, “The water needs of floodplain trees”. Ask most people about climate change, and you will soon find that even the relatively informed make two big assumptions. First: the world’s climate was more or less stable until recently, and second: human actions started changing our climate with the advent of industrialization. If you have spent any time reading through this website, you will know that the first assumption is false. For millions of years, changes in Earth’s climate, driven by natural forces, have radically transformed the conditions for life on Earth. Admittedly, the most recent geological epoch – the Holocene – is defined, in part, by its relatively stable climate. Nevertheless, regional and even global climates have still changed quickly, and often dramatically, in ways that influenced societies long before the recent onset of global warming. Take, for example, the sixteenth century. Relative to early twentieth-century averages, the decades between 1530 and 1560 were relatively mild in much of the northern hemisphere. Yet, after 1565, average annual temperatures in the northern hemisphere fell to at least one degree Celsius below their early twentieth-century norms. Despite substantial interannual variations, temperatures remained generally cool until the aftermath of a bitterly cold “year without summer,” in 1628. Since the expansion of the glacier near Grindelwald, a Swiss town, was among the clearest signs of a chillier climate, these decades are collectively called the “Grindelwald Fluctuation.” It was one of the coldest periods in a generally cool climatic regime that is today known as the “Little Ice Age.” Volcanic eruptions undoubtedly caused some of the cooling. In 1595, the eruption of Nevado del Ruiz released sulphur aerosols into the atmosphere, scattering sunlight and thereby cooling the planet. Just five years later, Huaynaputina exploded in one of the most powerful volcanic explosions of the past 2,500 years. Major volcanic eruptions following in close proximity to one another can trigger long-term cooling by activating "positive feedbacks" in different parts of Earth’s climate system. In the Arctic, for example, volcanic dust veils lead to chillier temperatures, which can increase the extent of Arctic ice that, through its high albedo, reflects more sunlight into space than the water or land it replaces. That in turn leads to even cooler temperatures, more ice, and so on. However, the onset of the Grindelwald Fluctuation preceded the eruption of Nevado del Ruiz by some thirty years. Clearly, volcanoes were not the only culprits for the colder climate. Some scientists believe that low solar activity also played a role. Yet, although the sun was less active during the Grindelwald Fluctuation than it is today, it will still more active than it was in most other decades of the Little Ice Age. That leads us to our second assumption: the idea that anthropogenic climate change began with industrialization. Most scholars of past climate change would still agree, but that might be changing. Recently, a growing body of evidence has started to suggest that humanity’s impact on Earth’s climate might be much older. Human depravity, it seems, might have been to blame for the cooling of the sixteenth century. Back in 2003, palaeoclimatologist William Ruddiman proposed that humans were to blame for preindustrial climate change, in a groundbreaking article that shocked the scientific community. Two years later, he thoroughly explained and defended his conclusions in book called Plows, Plagues, and Petroleum: How Humans Took Control of Climate. Ruddiman argued that humanity had slowly but progressively altered Earth’s atmosphere since the widespread adoption of agriculture. Some 8,000 years ago, communities in China, Europe, and India made room for agricultural monocultures by burning away forests. According to Ruddiman, the scale of deforestation was enough to steadily increase the concentration of atmospheric carbon dioxide. Then, from around 5,000 years ago, rice farming and, to a lesser extent, livestock cultivation slowly raised atmospheric methane concentrations. Ruddiman concluded that the cumulative effect of these anthropogenic greenhouse gas emissions was to gradually increase average global temperatures, and perhaps ward off another ice age. Ruddiman also argued that, since the adoption of agriculture, temporary fluctuations in atmospheric carbon dioxide concentrations followed from dramatic changes in human populations. During major disease outbreaks, Ruddiman insisted, populations declined to such an extent that agricultural land went untilled on a vast scale. Woodlands expanded, pulling more carbon dioxide out of the atmosphere than the agricultural crops they replaced, and thereby cooling the planet. When populations recovered, farmers burned down forests and planted their monocultures, warming the Earth. During the sixteenth century, Spanish soldiers and settlers established a vast empire by waging environmentally destructive wars on the indigenous peoples of central and southern America. They forced many of the survivors into new settlement patterns and gruelling forced labour. They also disrupted indigenous ways of life by appropriating, and often transforming, regional environments. Their animals, plants, and pathogens encountered virgin populations and spread rapidly. Indigenous communities in hot, humid climates were especially vulnerable to outbreaks of Eurasian crowd diseases, which included smallpox, measles, influenza, mumps, diphtheria, typhus, and pulmonary plague. Recent population modelling suggests that the population of the Americas declined from approximately 61 million in 1492 to six million in 1650. By the late sixteenth century, this holocaust was well underway. Land previously colonized by indigenous communities through controlled burning or the planting of agricultural monocultures gradually reverted to woodlands. While all plants inhale carbon dioxide and exhale oxygen, tropical rainforests are much more effective carbon sinks than human crops. In the Americas, reforestation on a vast scale probably lowered atmospheric concentrations of carbon dioxide by 7 to 10 parts per million between 1570 and 1620. Human cruelty may therefore have contributed to the climatic cooling also caused by volcanic eruptions and, maybe, a decline in solar radiation relative to modern or medieval norms. A growing body of scholarship now provides evidence for these relationships. However, there are many questions that must be answered before we can confidently conclude that depopulation helped trigger the Grindelwald Fluctuation, let alone other episodes of climatic cooling. For instance: did the cooling effect of sixteenth-century reforestation in the Americas overwhelm the warming influence of contemporaneous deforestation in China and India? Were invasive species introduced by Europeans into the Americas incapable of preventing reforestation? Was the pace of depopulation, and in turn reforestation, really so fast and so universal that it could substantially reduce atmospheric carbon dioxide concentrations over the course of a few decades? It will take a while to answer these questions, but some scholars are already drawing big conclusions. Earlier this year, geographers Simon Lewis and Mark Maslin argued that the cooling set in motion by the depopulation of the Americas could be considered the beginning of the “Anthropocene,” the proposed geological epoch dominated by human transformations of the world’s environment. Dating big changes in geological time is tricky business. The changes must be visible in the global stratigraphic record – that is, in rock layers – and they must be traceable to a specific date. Lewis and Maslin lean on earlier environmental histories of the “Columbian Exchange,” the European transfer of plants, animals, and pathogens between the New and Old Worlds. The impact was a global biotic homogenization that, according to Lewis and Maslin, should be visible in the stratigraphic record. That still leaves them without a specific date, however. They settle on 1610, because that was when atmospheric carbon dioxide levels reached a minimum caused, they say, by European depopulation of the Americas. There may be one more wrinkle to this sad story. In a forthcoming book, I argue that the Dutch revolt against the Spanish empire was provoked, in part, by high food prices that followed from harvest failures during the chilly onset of the Grindelwald Fluctuation. Then, until the early seventeenth century, the Dutch rebellion benefitted from a chilly climate. Dutch fortifications routinely forced Spanish armies to stay in the field during the frigid winters of the Grindelwald Fluctuation. The effect on Spanish soldiers could be disastrous. It is possible, therefore, that Spanish conquests in one part of the world contributed to climate changes that benefitted a rebellion against Spanish rule in another.
If so, the Eighty Years’ War may provide one of the first examples of such a self-defeating climate history of violence. It was certainly not the last. Recently, interdisciplinary researchers have found similar connections at work in the Syrian civil war. In a poorly governed society already destabilized by migrants fleeing the American invasion of Iraq, a severe drought caused, in part, by anthropogenic warming created fertile conditions for rebellion. The countries now at war in Syria and Iraq include those most responsible for the climate change that helped set the conflict in motion. Studying the Grindelwald Fluctuation may provide deep context for these relationships, by rooting them in a long history of violence and environmental transformation. It may also show that both assumptions commonly held about climate change are wrong. ~Dagomar Degroot My thanks to professors John McNeill, Richard Hoffmann, and Sam White for suggesting sources and helping me think through these relationships. Graph Source: Nussbaumer, Samuel U. and Heinz J. Zumbühl, "The Little Ice Age history of the Glacier des Bossons (Mont Blanc massif, France): a new high-resolution glacier length curve based on historical documents." Climatic Change 111 (2012): 301-334. On Volcanic Cooling: Sigl, Michael, M. Winstrup, J. R. McConnell, K. C. Welten, G. Plunkett, F. Ludlow, U. Büntgen, M. Caffee, et al., “Timing and Climate Forcing of Volcanic Eruptions for the Past 2,500 Years,” Nature 523 (2015): 543–49. On Anthropogenic Cooling: Dull, Robert A., Richard J. Nevle, William I. Woods, Dennis K. Bird, Shiri Avnery, and William M. Denevan. “The Columbian Encounter and the Little Ice Age: Abrupt Land Use Change, Fire, and Greenhouse Forcing.” Annals of the Association of American Geographers 100 (2010): 755–71. doi:10.1080/00045608.2010.502432. Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, and V. I. Morgan. “Natural and Anthropogenic Changes in Atmospheric CO2 over the Last 1000 Years from Air in Antarctic Ice and Firn.” Journal of Geophysical Research: Atmospheres 101, no. D2 (1996): 4115–28. doi:10.1029/95JD03410. Ganopolski, A., R. Winkelmann, and H. J. Schellnhuber. “Critical insolation–CO2 Relation for Diagnosing Past and Future Glacial Inception.” Nature529 (2016): 200–203. doi:10.1038/nature16494. Hunter, Richard, and Andrew Sluyter. “Sixteenth-Century Soil Carbon Sequestration Rates Based on Mexican Land-Grant Documents.” Holocene 25 (2015): 880–85. doi:10.1177/0959683615569323. Kaplan, Jed O. “Holocene Carbon Cycle: Climate or Humans?” Nature Geoscience 8 (2015): 335–36. doi:10.1038/ngeo2432. Lewis, Simon L. and Mark A. Maslin. “Defining the Anthropocene.” Nature 519 (2015): 171-180. Mitchell, Logan, Ed Brook, James E. Lee, Christo Buizert, and Todd Sowers. “Constraints on the Late Holocene Anthropogenic Contribution to the Atmospheric Methane Budget.” Science 342 (2013): 964–66. doi:10.1126/science.1238920. Nevle, R.J., D.K. Bird, W.F. Ruddiman, and R.A. Dull. “Neotropical Human–Landscape Interactions, Fire, and Atmospheric CO2 during European Conquest.” The Holocene 21 (2011): 853–64. doi:10.1177/0959683611404578. Pasteris, Daniel, Joseph R. McConnell, Ross Edwards, Elizabeth Isaksson, and Mary R. Albert. “Acidity Decline in Antarctic Ice Cores during the Little Ice Age Linked to Changes in Atmospheric Nitrate and Sea Salt Concentrations.” Journal of Geophysical Research: Atmospheres 119 (2014): 5640–52. doi:10.1002/2013JD020377. Ruddiman, William. “The Anthropogenic Greenhouse Era Began Thousands of Years Ago.” Climatic Change 61 (2003): 261–93. Ruddiman, William. Plows, Plagues, and Petroleum: How Humans Took Control of Climate. Princeton, NJ: Princeton University Press, 2005. Ruddiman, William, Steve Vavrus, John Kutzbach, and Feng He. “Does Pre-Industrial Warming Double the Anthropogenic Total?” The Anthropocene Review 1 (2014): 147–53. doi:10.1177/2053019614529263. Wang, Z., J. Chappellaz, K. Park, and J.E. Mark. “Large Variations in Southern Hemisphere Biomass Burning During the Last 650 Years.” Science330 (2010): 1663–66. Last year might have been the hottest year ever recorded by our instruments. Average global temperatures were at least 0.27° C warmer than the average between 1981 and 2010, which was in turn up from the preindustrial norm. Overall, the past 17 years have been very warm, and since 2002 temperatures have been consistently well above the 1981-2010 average. However, that consistency is not clearly reflected in Arctic sea ice trends. In fact, the winter extent of Arctic sea ice has expanded in the last two years, seemingly defying projections of its imminent collapse. Arctic sea ice is extremely complex and comes in many forms that respond more or less aggressively to seasonal changes and temperature anomalies. Currents, wind patterns, and even subtle differences in Earth’s gravitation also influence sea ice extent, although temperature usually plays a dominant role. As a result, Arctic sea ice coverage rises in winter and falls in summer. Its minimum and maximum yearly extent reflect shifts in average annual temperature, and in turn climate change. In the winter of 2010/11, Arctic sea ice reached its lowest-recorded extent (above). Satellite data reveals that, in December 2010, average Arctic sea ice covered just 12 million square kilometers. While that may sound like a lot, it is some 1.35 million square kilometers below the 1979-2000 average, and 270,000 square kilometers below the previous record low (set in 2006). The sharp decline in Arctic sea ice coincided with very high global temperatures. In fact, scientists are still determining whether 2014 was actually warmer than 2010. In the wake of the winter of 2010/11, it seemed as though even the direst projections of Arctic sea ice decline had been too optimistic. Perhaps a threshold had been crossed, a tipping point had been reached, and Arctic sea ice would soon vanish. However, since the winter 2010/11 Arctic sea ice extent has haltingly recovered. Satellite maps demonstrate that Arctic sea ice currently covers 12.52 million square kilometers, about 520,000 square kilometers more than the 2010/11 maximum (above). The greatest change relative to 2010/11 is in the Canadian Arctic and Subarctic, where the Hudson and Baffin Bays are now completely covered with ice. If Arctic warming has persisted since 2010, why has Arctic sea ice recovered? One possible explanation lies in the recent history of the Arctic Oscillation (AO), a band of winds that circle the Arctic in a counter clockwise direction. When the AO is in a positive phase, its winds move quickly, tightly sealing frigid air in the Arctic. When it is in a negative phase, its winds move more slowly and the band is distorted, allowing Arctic air to descend towards lower latitudes. There appears to be a correlation between a negative AO and reductions in Arctic sea ice extent. The AO, which was in a strongly negative phase in 2010, is now apparently in a weakly positive setting. Recent research also suggests that Arctic sea ice has a very low “memory” of previous trends. If, for example, Arctic sea ice extent is very low in September, winter heat loss is high, encouraging the formation of more sea ice. Such processes explain high year-to-year fluctuations in sea ice, yet they do not preclude long-term trends. The apparent recovery of Arctic Sea Ice therefore does not counter long-term developments in either regional sea ice decline or global warming. Sea ice extent in December was still 540,000 kilometers below the 1981-2010 average, which means that sea ice coverage in the Arctic is still declining by 3.4%/decade. Most model simulations still project an accelerating decline in Arctic sea ice extent, even in optimistic scenarios in which our civilizations sharply reduce their greenhouse gas emissions (above). Model simulations, scientific proxy data, and documentary evidence assessed by interdisciplinary scholars can contextualize sea ice in the modern Arctic in light of the distant past. My own recent research suggests that sea ice extent in the Arctic north of Europe during December 2014 is not dissimilar to what was encountered by European polar explorers during summer expeditions at the height of the Little Ice Age. This reflects climate change on a remarkable scale, given the vast annual difference between summer and winter sea ice coverage in the Far North. For example, I traced sea ice recorded by Henry Hudson and his crew, during their first Arctic expedition. In the above map, the outbound journey is depicted with a black solid line, while the return journey portrayed in a blue, dashed line. The part of the voyage in which ice was sighted is in white; a solid white line for the outbound journey, and a dashed line for the return. Compare the summer sea ice sighted in the Hudson journey with the edge of winter sea ice today (the second map provided in this article).
Ultimately, Arctic sea ice fluctuates from year to year in ways that can temporarily mask gradual climate change. The world is warming, and the Arctic is warming faster than anywhere else. It is important to keep an eye on the recent recovery in Arctic sea ice, but all indications are that it is just a momentary reprieve in a very worrisome trend. ~Dagomar Degroot A week ago I returned from what was, surprisingly, my first trip to Germany. This year the European Society for Environmental History convened its biannual conference in Munich, a city I’ll remember for its beautiful architecture, sensible public transit and delicious beer. No fewer than fifteen climate history panels were part of the conference, and despite my best attempts I couldn't attend them all. Still, I decided to share some of what I learned (or remembered) while listening to papers that were good enough to keep me from exploring Munich. Note that for the purposes of this little article, the terms “climate history” and “historical climatology” are synonymous. 1. Climate history must be inclusive to be effective.There is only limited value in mining one kind of documentary source for evidence of past weather and, in turn, past climate change. Of course, the value of such work fluctuates with the source under investigation: registers of past events called chronicles are notoriously prone to exaggeration, for example, while ship logbooks provide standardized, easily quantifiable and remarkably reliable weather observations. Still, a reconstruction of past climate that makes any claim to accuracy must, where possible, employ a wide variety of documentary evidence compiled by many authors. These reconstructions are strengthened when meteorological information contained in some documentary sources can be verified using the data contained in other documents. They gain even more credibility alongside scientific evidence like model simulations, or statistics developed using natural archives (ice cores or tree rings, for example). Good climatic reconstructions are necessarily interdisciplinary, and we should think carefully about what we are really saying when we discuss observations written by a single author, in a single source. Are we reconstructing the climate of a vast region across the decades, or are we engaging in literary criticism? If interdisciplinary work is essential to historical climatology, interactions between sub-disciplines are just as important. Climate history is often considered a sub-discipline of environmental history, which, in turn, is one genre in the broader field of history. Agricultural history, forest history and energy history are all among the sub-disciplines that together constitute environmental history. Like climate history, they lose significance when divorced from one another. Reconstructions of past climates are fascinating, but historians can also incorporate the many different sub-disciplines and genres of their profession to do something scientists can’t: weave the history of climate into the history of humanity. The narratives we get can be as valuable as the models developed by scientists as we struggle to understand our plight on a warming planet. 2. We're only scratching the surface of relevant documentary evidence.Chronicles and weather diaries have long formed the backbone of the documentary evidence used to reconstruct past climates. Questions of interpretation hound both sources, however, and these days, correspondence and ship logbooks are increasingly in vogue. In Munich I heard scholars like Rudolf Brázdil describe how correspondence related to the collection of taxes can yield strikingly detailed climatic reconstructions. Tax records can be placed alongside court documents, toll accounts and maintenance registers as largely quantitative sources that can yield rich climatic data if interpreted using qualitative evidence. New sources – and new methods of source interpretation - can provide data about wind patterns, hailstorms, and other previously unexamined meteorological conditions, deepening our understanding of climate change. 3. We need new ways of conceptualizing the relationship between climate change and human history.Fernand Braudel, perhaps the greatest historian of the twentieth century, introduced a revolutionary way of conceptualizing time. According to his notion of “total history,” different kinds of historical change transpire differently across time and space. Environmental or economic transformation at a vast scale spanned the centuries, yet the historical “event” was immediate. Understanding the past from this perspective allowed him to gather the entire Mediterranean world into a single narrative using the huge, lumbering structures of history. The problem for historical climatologists – and indeed, all environmental historians – is that Braudel was wrong. Interdisciplinary research has revealed that many historical structures can be brittle; they can break quickly with immediate yet regionally specific ramifications. For example, climate change influenced by volcanic eruptions and the subsequent expansion of polar ice could alter prevailing weather patterns over the North Sea in one cruel winter. However, the same processes behind routinely cold winters in northern Europe could bring not frost but rather drought to the Mediterranean.
So different kinds of historical change can occur across many scales of time and space, and that complicates our attempt to conceptualize connections between past environments and historical events. Human history cannot be modeled – we simply lack all of the necessary variables – but in recent years environmental historians have made great progress going beyond the problematic concepts like footprint metaphor or social metabolism in their efforts to conceptualize the connections between nature and society. In this effort historical climatologists lag behind their peers, and for that reason climate histories can devolve into lists in which weather events likely stimulated by a climatic shift cause environmental changes that contribute to one event after another in the history of a particular region. Historians need to work with colleagues across many disciplines to develop ways of understanding relationships between climate, weather and human history. These ways of understanding might not completely explain the past, but they might help us conceive of historical change more clearly, with insights applicable for our future on a warming planet. ~Dagomar Degroot Note: originally posted on The Otter, blog of the Network in Canadian History and Environment (NiCHE). On February 10th I embarked on the first leg of a long voyage from Toronto to Goa, a former Portuguese enclave nestled among the beaches of western India. After enduring the concrete monolith that is Frankfurt’s international airport, I finally boarded my second flight and flew south through Turkey, past Syria, across Iran and down towards Mumbai. I left the plane at an hour past midnight. Mosquitos swarming through the airport quickly prompted me to take the malaria medication that would later give me incredibly vivid dreams. Hours later the shock of a violent landing in Goa was nothing compared to the culture shock that followed. As I left the airport and stepped onto the rust-coloured soil I saw signs promoting European luxury vehicles or American cologne towering over slums and endless trash amid lush tropical beauty. After three sunrises and two sunsets without sleep I finally arrived at my hotel, ignoring for the moment the hand-sized spider dangling near my door. With the help of funding generously provided by Network in Canadian History and Environment (NiCHE), I had travelled nearly 13,000 kilometers to attend the fourth Open Science Meeting (OSM) organized by the Past Global Changes (PAGES) initiative. A core project of the International Geosphere-Biosphere Programme, PAGES has over 5000 subscribing scientists across more than 100 countries. Because research supported by PAGES explores past environments to create a roadmap for the future, the initiative is especially concerned with climate change. Every four years its Open Science Meeting is held in a new location, and in case the Olympic parallels were not obvious enough a “PAGES lamp” was lit at the opening ceremonies. It may not have resembled London’s burning torch, but it did avoid the mishap that embarrassed my fellow Canadians at the Vancouver Olympics. It’s easy for historians to forget that we don’t have a monopoly over the interpretation of the past. There’s nothing like a scientific conference to remind us that we can only access a tiny sliver of the very recent past, that other disciplines can find voices which speak to the present in sources beyond the documents we hold sacred. Many of the scientists at the OSM reconstructed past climates to measure the significance of modern warming, to unravel how climatic shifts influence different environments, and to provide a clearer picture of the world’s natural history. In papers and posters scientists presented results derived from the exhaustive analysis of, for example, changes in the growth of trees, the thickness of permanent ice cover and the scope of lakebed deposits. Conclusions were compared with other data that measured shifts in animal ranges, tree lines or glacial extent, all of which can be used to reconstruct changes in regional temperature or precipitation. Evidence from these so-called “proxies” was weighed against a range of sophisticated models, enabling projections of climates past that move seamlessly into the present and future. Not surprisingly, correlating fluctuations in diverse proxy records and tying them to climatic trends is hardly straightforward. Physicist Ashoka Kumar Sinhvi gave an opening keynote address that exposed the frequently overlooked complexity of linking different kinds of data between different environments at different scales, revealing the limitations of our understanding of past and future climates. Later in the day that concept was echoed by André Berger, who explained how the intricate constellation of influences that shapes the global climate is never stable, complicating the attempt to find historical analogues for our present condition. Sinhvi, Berger and others helped frame the rich data presented in the papers and posters that followed by demonstrating yet again that in science, as in history, the past is opaque, unstable, and forever subject to interpretation. Of course, that never stops us from seeking more information and, in turn, greater clarity. Some particularly fascinating papers explored past Antarctic climates at a time when the Antarctic Peninsula is warming at a rate of 5.3° C per century. Michael Weber presented findings that reveal how the Antarctic ice sheet is much more reactive to atmospheric Carbon Dioxide than previously believed. Robert Mulvaney then described how the rate of Antarctic melting, unprecedented in the past millennium, likely had analogues in the distant past when ice shelves were entirely absent. Medieval warmth and early modern cooling, familiar to historians of climates past, apparently were not felt in Antarctica. On the other hand, Guillaume Leduc presented exhaustive findings that, while skewed towards the Atlantic region, nevertheless suggested that the “Little Ice Age” between the fourteenth and nineteenth centuries strongly affected global sea surface temperatures. Those results may have critical implications for the nascent field of marine environmental history, which until now has not adequately considered climatic fluctuation. To unravel histories that bridge culture and nature, environmental historians require some scientific literacy, yet I wasn’t sure what to expect as I prepared to give at a talk at a conference where formulas were ubiquitous and historiography unheard of. I argued that documentary evidence can improve the accuracy of reconstructions of temperature or precipitation, giving us a way of testing meteorological patterns recorded by the kinds of sources unearthed by scientists. Accustomed to the critical analysis of diverse documents, historians are ideally situated to filter documents through the kind of methodology that lets us quantify past weather observations and, in turn, reconstruct the climatic past. Moreover, while tree rings or ice cores rarely provide much more than seasonal resolution, surviving documents can record weather with far greater temporal precision, and some even chart hourly changes. Most importantly, documentary evidence grants us access to past wind intensity or direction, weather conditions that are less easily measureable through the analysis of scientific proxy data. For centuries it was necessary for European mariners to estimate longitude by calculating a ship’s speed, direction and any leeway in its course, for which the most important influence was wind. Hence many logbooks kept aboard ships abound with reliable and quantifiable meteorological information taken several times on virtually every day of the vessel’s journey. The bulk of my talk presented results from English and Dutch ship logbooks, which suggest that easterly winds increased in the late seventeenth century as the climate cooled across the North Sea. I was relieved and delighted by the reception I received from the scientists in the audience. More importantly, it was heartening to see the importance of interdisciplinary cooperation in the new “Future Earth” project spearheaded by the International Geosphere-Biosphere Programme. Still, many scholars in both the sciences and the humanities continue to take a passive approach to building connections between disciplines. Conferences like the PAGES OSM have existed for decades, yet many historians fail to realize that their insights are needed and desired. Similarly, most presenters at the upcoming ASEH conference are historians, and scientists or engineers remain underrepresented. Establishing connections between institutions like NiCHE, the ASEH, PAGES and the Climate History Network (CHN) can help move us forward, but what’s even more valuable is feedback from those who have benefitted from conferences in another discipline. After the conference in Goa I spent a few days in the vast metropolis of Mumbai. My plane was delayed, and as it finally approached the city our pilot was forced to circle the airport for a few minutes before we could land. The slums in Mumbai are so vast that their full extent can only be grasped from the air. As I shifted in my leather seat I glimpsed the innumerable shanties, clustered around open sewage, barely visible through the purple smog. The impoverished people far below, and countless millions like them, will suffer most as our planet continues to warm, yet their voices are never heard in academic or political conferences. The quest to understand climate change must become more inclusive, not just of other academic disciplines, but of all voices, past and present, learned and “unlearned,” rich and poor.
~Dagomar Degroot For those interested in climates past and present, trees do more than absorb carbon dioxide. Seasonal changes in cellular growth near the bark of a tree leave rings buried in its wood. The size of those records is tied to the growth of the tree; a good year will imprint a thick ring, while hard times leave mere slivers. Anyone who's ever owned a plant will understand that most trees need abundant sun, moderate temperatures and sufficient water. Of course, gardeners are aware that different plants - from weeds to trees - respond to different conditions. By researching the peculiar tastes of various tree species climatologists can use tree trunks to reconstruct yearly fluctuations in temperature and precipitation, sometimes over hundreds of years. The resulting reconstructions have been featured on this site ("Does tree ring data reflect global cooling? July 9, 2012"). With good reason: tree rings enable reliable climatic reconstruction for most parts of the world, especially in temperate regions where the contrast between seasons usually yields more discernible rings. However, most sources useful for the reconstruction of past climates have their shortcomings, and these inevitably stimulate controversy. Tree rings are no exception. Sulphur released into the atmosphere by volcanic eruptions of sufficient size at the right locations can cool the world's average temperature. Strangely that global cooling, while recorded by other sources and climate models, is not represented to the same extent in tree ring data. A new study by Michael Mann, Jose Fuentes and Scott Rutherford in the journal Nature Geoscience has suggested that trees in some altitudes simply stop growing when temperatures plummet below a certain threshold. Many trees would survive, and for those trees the next tree ring would therefore record growth only after temperatures had rebounded above that threshold. It is possible, therefore, that climatic reconstructions compiled using tree rings are less accurate than previously thought. No fewer than twenty-three scientists responded to these claims, and the subsequent debate is nicely summarized by Scott Johnson at Ars Technica. Whatever its resolution, the controversy highlights the weaknesses of climatic reconstructions that use just one kind of source. The most reliable reconstructions of past climates and, for that matter, human history are generally those that incorporate a wide-ranging and diverse selection of evidence. For some weather conditions, in some places, for some time, evidence useful for climatic reconstruction can include all manner of sources, involving not only tree rings, plankton deposits, ice cores and other records accessible by scientists, but also surviving documentary records from literate cultures. The cross-disciplinary dialogue encouraged by this diversity of sources can break down, however, when scholars broaden their focus. Changes in weather conditions like wind direction that may be associated with climatic fluctuation aren't easily reflected in scientific data. Reconstructions therefore rely heavily on, for example, logbooks kept aboard ships that record daily weather. On the other hand, past cultures that communicated information orally have left us few sources useful for climatic reconstruction, and when piecing together the climatic shifts that affected such civilizations we must depend on, for example, tree ring data. As our interest enters the distant past we leave behind both documentary sources and tree ring data, and our reconstructions must increasingly rely on ice cores. Beyond 1.5 million years into the past we must turn to sediments and consider increasingly indirect consequences of climatic fluctuation, as our reconstructions diminish in accuracy.
Ultimately we cannot measure or understand global warming without reference to the past; after all, the world must be warming relative to what came before. Moreover, our best guess of what may happen in the future can come through an analysis of warmer (and colder) periods in our past. For that reason it is critical that we grasp the limitations of the sources that we use to reconstruct the climates of that past. Ultimately the best answers are always found through diversity: diversity of sources, methodologies, and perspectives. Note: I will be discussing some of these themes next week at the PAGES Open Science Meeting in Goa, India. ~Dagomar Degroot Whether consciously or unconsciously, most scholars study something important to their societies. The walls of the ivory tower are, in fact, quite porous. It's no surprise that the genre of history that deals with environmental issues - environmental history - grew out of the debates surrounding the use of DDT. No surprise, either, that academics within disciplines from anthropology to economics are increasingly considering the influence of climate change just as the effects of global warming are becoming painfully obvious. Now more than ever, research into past climates is not just for scientists. If environmental history grew steadily in the decades since its conception, so too did its semi-autonomous, interdisciplinary cousin: climate history, or historical climatology. This site regularly describes some of the more interesting work published by historical climatologists, before considering how it can reframe today's environmental issues. Equally striking, however, is what's not (yet) published, but spoken. Testament to the growing importance of climate history within environmental history, interviews about past climates have aired this year on two of the major audio resources in the discipline: Nature's Past and Environmental History Resources. Moreover, last year the growing diversity of climate history was well represented at the major conference for the North American branch of environmental history. In Madison, Wisconsin, papers explored how a shifting climate influenced issues ranging from nineteenth century famines in the far north to the construction of the St. Petersburg ice palace during the frigid winter of 1740. Even more topics are on this year's agenda. In Toronto climate change will be connected to cold war national security, the history of Lake Superior, Alberta's fossil fuel economy, the hydrology of central Mexico, warfare down the Danube, early modern transportation, and much more. As the study of past climate change claims an increasingly important place within environmental history, it has also entered the mainstream of the historical profession. At this year's meeting for the American Historical Association - the largest conference in the discipline - climate history was featured in three back-to-back sessions. As described by Sam White of the Climate History Network, historians unraveled how past climatic variability influenced hurricanes in New Orleans, agricultural sustainability, and human history across many thousands of years. Rising interest in climate change within history and other non-scientific disciplines is obvious in published scholarly literature. It is equally apparent online and at conferences, where the insights described and discussed have equal relevance for our struggle to make sense of a warming planet. ~Dagomar Degroot Article originally posted on ActiveHistory.ca. In recent weeks widespread outrage over the publication of Kate Middleton’s topless photos has existed in strange parallel with a muted response to a shocking acceleration of Arctic melting. While every day brought new stories of royal indignation and litigation to the front pages of major newspapers, concern over the plight of our increasingly topless planet was tucked away in corners of the internet, where many comments were, as ever, skeptical at best. Nevertheless, our destruction or, at least, transformation of the planet’s environment continues despite our apathy and cynicism. This summer Arctic ice cover fell to 3.41 square kilometers, a decline by an area the size of Texas against the previous minimum and some 50% lower than the average between 1979 and 2000. The reasons for enduring public skepticism of climate science and global warming have been examined at length – most eloquently in Naomi Oreskes’ and Eric Conway’s Merchants of Doubt – but the causes for the apathy of believers are less clear. Upon encountering present-day mysteries our natural inclination as “active” historians is to sift through the past for context and, perhaps, answers. This article proceeds along similar lines, and it is the fourth in a series that explores how historians can shed light on global warming and its consequences. My research unravels relationships between early modern climatic fluctuations and the commercial, military and cultural histories of the Dutch Republic in the seventeenth century. Although those climatic fluctuations were collectively part of a relatively cool climate known as the “Little Ice Age,” average European temperatures during the period could change by nearly 2 degrees Celsius in just a few years. That pales in comparison to the likely scale of future anthropogenic warming, but for historians seeking insight into the climatic shifts we’ve already experienced the Little Ice Age is a great place to look. The problem is, of course, that most societies within early modern Europe bore little resemblance to our own, and the historical writing we examine to contextualize the present was recorded by observers who frequently perceived weather very differently than we do now. In that alien world the Dutch Republic was unique, a society with capitalist socio-economic structures that seem instantly familiar, and were expressed in everything from remarkable rates of urbanization to incessant financial speculation. Admittedly not many of us are rabid Calvinists or troll the North Sea for herring, but searching the historical record for perfect analogues to ourselves is, of course, impossible. The surviving records kept by the politicians, merchants, farmers and mariners of the Republic provide some of history’s best insights into how we approach a changing climate. After countless hours spent reading tattered correspondence, water-stained ship logbooks and half-burned diary entries - and thanking the Dutch archival system for its growing commitment to digitalization – a pattern emerges for the weary environmental historian of the Dutch Republic. In the seventeenth century Netherlands, those furthest removed from the environmental necessities of life were least likely to appreciate the importance of weather, even in a country prone to devastating storm floods. Logbooks kept aboard Dutch sailing ships abound with meteorological observation because recording the influence of wind was critical for contemporary navigation. Moreover, the seaworthiness of the vessel, the survival of its stores and the health of its crew were strongly tied to the weather that prevailed during a journey. No surprise, then, that during gales sailors scribbled fearful notes in the margins of their logs, before describing their relief when the weather cleared. Scattered among these reflections are hints that mariners whose work bound them to defined geographic locations perceived changes in patterns of prevailing weather related to shifts in the early modern climate. On the other hand, letters sent by the Republic’s political elite from its many urban centres have limited value for the environmental historian. Johan de Witt, the Republic’s leading political figure in the mid-seventeenth century, was apparently far more concerned about the financial ramifications of the state’s rising debt than even the most severe weather events of his time. To paraphrase Mark Twain, history may not exactly repeat itself, but it does have a tendency to rhyme. For sailors, such apathy was not an option. The most telling examples of the tension occasionally kindled by these very different attitudes come from the naval wars in which the Republic was embroiled for much of its tenure as a European great power. The weather of the First Anglo-Dutch War was unusually stormy, although the causes were likely unrelated to a broader climatic shift. Fall and winter in the North Sea is almost always tempestuous, but in 1653 the Republic’s situation looked desperate, and in late October the Dutch Admiral – the wonderfully named Witte de With – was still on convoy duty. As he returned to the islands that surrounded the interior waters of the Republic his supplies were low and his crew was mutinous. The Republic’s governing body decided that Witte and his fleet should receive their supplies at sea, to prevent widespread desertion upon arrival at port. In a series of increasingly desperate letters De With begged his superiors to reconsider. Leaving the fleet at sea in the unpredictable and often violent autumn weather was courting suicide, De With insisted, but his masters were unmoved. On November 7th De With’s predictions came to pass when a severe gale sunk eleven warships and drowned some 1,400 seamen. Historians frequently wrestle with the challenge of creating inclusive histories for societies in which literacy was the privilege of the elite. While those of us who piece together the history of climate frequently use sources that have been overlooked by other historians, we also require the kind of continuous, quantifiable records that were not usually kept by the poor. We may use the logbooks compiled by naval officers where other historians read the correspondence of wealthy merchants, but the reflections of ordinary sailors and dock workers are too often lost to us, as well. Of course, it was often precisely the poor – both urban and rural – whose work and play was most rooted in the unique environment of the Dutch Republic. Consequently, what we do know about, for example, small-scale farmers is intriguing. When the early modern climate cooled and persistent freezing halted travel through the Republic’s many canals, farmers abandoned their boats and used sleds to transport their goods. By switching easily between different modes of transportation, farmers, so attuned to the weather, adapted better than most within the Dutch Republic. Today, most of us live in concrete jungles that may be oppressed by heat and cold but seem far removed from the environmental consequences of those fluctuations in temperature. A book I recently read about the shipwrecked child of a zookeeper included a passage that, for the environmental historian, provided a thought-provoking summary of the concept of “home.” To the protagonist of Life of Pi, home is a place where the environmental necessities of life, otherwise scattered across a vast geographic expanse, are collected for our convenience. The environmental historian will, of course, note that those environmental resources are not collected but rather connected for our benefit; no food is stored within our urban apartments that did not come from outside. The disastrous droughts of the past summer have reminded some of us that the environmental networks that sustain our urban lives are already strained in the face of an accelerating climatic shift, although many within the American states most affected were likely more impressed with Paul Ryan’s workout regime. Ultimately, separation from the environments that support us has more to do with our psychology than our geography. As the climate cooled in the late seventeenth century Adriaen van der Goes, a lawyer in The Hague, described weather patterns and their repercussions in vivid letters to his brothers. Neither class nor geography excuses our apathy. Like the politicians who doomed De With’s fleet, we should know better, and, in knowing, we should care. ~Dagomar Degroot In just 27 seconds, NASA has presented one of the most effective summaries of our warming climate available anywhere on the internet. Using reliable instrumental data, this quick video captures the tail end of the Little Ice Age (depending how you want to date it), the rise in early twentieth century temperatures, the brief cooling of the early 1940s, and the longer cooling of the 1960s and '70s. Then, the final 10 seconds of the graph reveal how the rising concentration of atmospheric greenhouse gases is rapidly heating our planet, particularly at the poles. Relevant to that polar heating: this year's shocking Arctic ice melt, and the building awareness that the North Pole's sea ice is likely melting 50% faster than was predicted by most scenarios previously developed by scientists.
|
Archives
March 2022
Categories
All
|